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Abstract:

The well-known discussion on an engine consisting of a ratchet and a pawl in [R.P. Feynman, R.B.
Leighton, and M. Sands, The Feynman Lectures on Physics, vol. 1 (Addison Wesley, Reading,
Massachusetts, 1963), pp. 46.1-46.9] is shown to contain some misguided aspects: since the engine is
simultaneously in contact with reservoirs at different temperatures, it can never work in a reversible
way. As a consequence, the engine can never achieve the efficiency of a Carnot cycle, not even in the
limit of zero power (infinitely slow motion), in contradiction with the conclusion reached in the Lectures.

Introduction●   

Sketch of Feynman's analysis●   

The criticism●   

Conclusions●   

Acknowledgements●   

Appendix●   

References●   

Juan M.R. Parrondo
parr@seneca.fis.ucm.es

Criticism of Feynman's analysis of the ratchet as an engine

http://seneca.fis.ucm.es/parr/FEYNMAN/nice.html [8/10/2001 10:29:02 AM]

http://seneca.fis.ucm.es/personalucm/PAPERS_PS/feynman.ps
http://seneca.fis.ucm.es/personalucm/PAPERS_PS/feynman.ps.Z
http://seneca.fis.ucm.es/parr


  
Next: Sketch of Feynman's Up: Criticism of Feynman's analysis Previous: Criticism of Feynman's
analysis

Introduction
Chapter 46 of The Feynman Lectures on Physics [1] contains a celebrated illustration of the impossibility
of obtaining work from thermal fluctuations with an efficiency greater than that of a Carnot cycle. A
careful analysis of a device that, at first sight, seems to lift a weight using the thermal energy of a gas,
reveals that there exists in fact a dissipation which prevents the failure of the second law of
thermodynamics. The device is nothing but an axle with vanes in one of its ends and a ratchet in the other
that, in principle, can move only in one direction (Fig.1). If the vanes are surrounded by a gas at a given
temperature, they will undergo collisions with the molecules of the gas and oscillate as a
one-dimensional Brownian rotor. However, due to the presence of the ratchet at the other end of the axle,
only fluctuations in one direction, if they are strong enough, could make the ratchet lift the pawl and
advance to the next notch [2].

Feynman carried out an analysis of such an engine proving that, in order to obtain work out of thermal
fluctuations, the vanes must be within a thermal bath at a temperature  higher than the temperature 

of the ratchet. Moreover, he calculated, under some simplifying assumptions, the efficiency of the engine
and found it equal to that of a Carnot cycle. This example and the corresponding analysis, beside its
pedagogical interest, is cited as a proof of the impossibility of an automatic device acting as a Maxwell
demon [3] and has been also inspiration of a currently very active research field on transport induced by
Brownian motion in asymmetric potentials [4].

  
Figure 1: The ratchet and pawl machine (after [1]).

We point out in this paper a misconception of Feynman's analysis which, from our point of view,
diminishes its pedagogical virtues. Feynman's analysis focuses on an ideal situation in which the device
is supposed to work in a reversible way, so Carnot efficiency is reached. This ideal situation corresponds
to the limit of very slow motion of the engine, i.e., to a quasistatic process. We claim that such
quasistatic process is not reversible. The reason is that, in the ratchet engine of Fig.1, the system is in
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contact simultaneously with the two thermal baths at different temperatures. Consequently, it cannot be
in thermal equilibrium and an irreversible heat transfer unavoidably occurs.

It should be emphasized that we do not refer to a heat transfer through the materials of the elements of
the ratchet engine. These materials can be considered perfect isolators. In Feynman's discussion the vanes
and the ratchet are mechanically linked, but are thermally isolated. This would be a pertinent pedagogical
idealization. However, in this paper we show that the mechanical link between the vanes and the ratchet
necessarily implies that the thermal baths are not thermally isolated. There is an essential incompatibility
between mechanical coupling and thermal isolation because the mechanical coupling induces, via
fluctuations, a heat transfer between the thermal baths.

Notice the difference between the Carnot and the ratchet engines. In a Carnot cycle the heat transfer can
ideally occur in a reversible way because the engine is never simultaneously in contact with the two
thermal baths. The steps where the heat transfer takes place, the isothermal expansion and compression,
can be considered approximately reversible if they are slow enough or, more precisely, much slower than
the relaxation to equilibrium of the gas in the engine. For the ratchet this is not the case. The system is
simultaneously in contact with the two thermal baths, so the heat transfer cannot be performed reversibly,
not even in the quasistatic limit. There are no two time scales, as in the Carnot cycle, to compare.

The paper is organized as follows: in section II we briefly review Feynman's analysis and in section III
we discuss our criticism in detail. We first recall that Carnot efficiency is equivalent to zero entropy
production and then we analyze the stationary regime that Feynman assumes to be reversible, arguing its
intrinsic irreversibility on the grounds of general principles from Statistical Mechanics. Finally, we
present our conclusions in section IV.
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Sketch of Feynman's analysis
Consider first the setup of Fig.1 without any weight. Feynman convincingly argues that the engine cannot
work if the vanes and the ratchet are at the same temperature. Let T be this temperature and  the energy
required to lift the pawl just above the tooth against the spring that pulls it down. For low temperatures, the
rate at which a fluctuation provides the vanes with energy enough to move the ratchet to the next tooth can be
approximated by the Arrhenius factor, i.e., is proportional to . But the pawl itself is also embedded
in a thermal bath at temperature T, so it can be lifted by fluctuations from this bath and, moreover, these
backward jumps occur at the same rate. Therefore, if both baths are at the same temperature no systematic
motion of the ratchet occurs.

Feynman then supposes different temperatures  for the thermal baths, i.e., the pawl to be colder

than the vanes. Now the rates of jumps are no longer equal and this drift can eventually be used to lift the
weight. Indeed, there is a value of the weight  such that both rates are equal and the ratchet does not

undergo any systematic motion. Assuming again that the rates are proportional to the Arrhenius factor with
the same proportionality constant, this value  is easily calculated:

If  is the potential energy [7] the weight L gains when the ratchet performs a forward jump (forward
direction being the expected direction of motion of the ratchet), then  is the energy needed for such a

forward jump. This energy is mainly obtained from the vanes, so the rate of forward jumps is proportional to
. For a backward jump the energy required is  and Feynman assumes that this energy is

taken from the ratchet bath, so the corresponding rate is proportional to . There is a weight  for

which both rates are equal:

 

Let us now turn to the evaluation of the energy transfer between the baths and the ratchet and vanes. We have
seen that in a forward jump the system takes an energy  from bath 1. After the jump, an energy  has

been dissipated. Feynman assumes that this energy is entirely dissipated to bath 2. In a backward jump, the
energy  is taken from bath 2 and after the jump an energy  has been dissipated. The further

assumption is that this energy is dissipated to bath 1. Table 1, which is a partial reproduction of Table 46-1 in
[1] summarizes the energy transfer for both types of jump.
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Table 1: Summary of operation of ratchet and pawl (from [1]).

If L is now chosen to be smaller but close to , then the wheel will move forwards very slowly, lifting the

weight. With the above assumptions on the energy transfer, it is not difficult to calculate the efficiency of the
engine. If the ratchet performs  forward jumps and  backward jumps, the total work done is

 and the amount of heat taken from bath 1 is . Therefore the

efficiency is

 

and, in the limit  (or zero power), the efficiency converges to that of a Carnot cycle (see Eq. (1)):
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The criticism
Carnot efficiency is reached when an engine works between two baths at different temperatures

 in a reversible way. If in a given period of time the engine takes an amount of heat  from

bath 1, releases  to bath 2, and performs work , ending in its initial state, the only

entropy variations in the universe are those of the thermal baths: bath 1 decreases its entropy by 

and bath 2 increases its by . Reversibility implies that the entropy must remain constant. Then:

 

and Carnot efficiency  immediately follows. Any irreversibility, i.e., any finite entropy

production , will reduce the efficiency of the engine.

Therefore, Feynman's calculation implies that the ratchet engine works in a reversible way, i.e.
, when L is infinitely close to . A look at Table 1 gives us the explanation of such

reversibility. The energy transfer between the engine and the baths in a forward jump is exactly the same
as in the backward jump reversing the signs. Consequently, if a forward jump is followed by a backward
one, the net flow of energy is zero. No heat is taken from bath 1, released to bath 2, no work is done on
or by the weight. When  the rate of jumps is the same in each direction, thus the situation is

completely reversible.

However, as stressed in the introduction, the ratchet is a system subject to nonequilibrium constrains:
different parts are simultaneously in contact with thermal baths at different temperatures. Consequently,
the system can never be in thermal equilibrium. The nonequilibrium nature of the state of a system which
is in contact with two thermal baths at different temperatures shows up by means of an irreversible heat
conduction. On the other hand, notice that, if Table 1 were correct, in the stationary regime  the

two baths at different temperatures do not exchange energy. In other words, the thermal conductivity of
the engine ---vanes, axle, ratchet, and pawl--- would be identically zero. As it will be clear below, here
we do not refer to a heat conduction through the materials of the elements of the ratchet engine but
through the very degree of freedom that allows the engine to work.
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It is not an easy task to estimate the thermal conductivity of the ratchet engine. In the Appendix we
calculate the conductivity of simpler but related systems, as a rigid or flexible axle with vanes at both
ends. We use a Langevin approach to deal with these examples. In this approach one can see that the
energy transfer between a system and a bath consists of two terms: one due to fluctuations (flow from the
bath to the system) and the other due to dissipation (flow from the system to the bath). These two terms
cancel each other if the state of the system is the Gibbsian equilibrium state . However, if a
single system is coupled to two thermal baths at different temperatures, its state is no longer 
(which T would we write?) and deviations from equilibrium imply that fluctuation-dissipation balance no
longer holds. A net energy flow from the hotter bath to the system and from this to the colder bath
occurs. This energy flow is in the form of incoherent fluctuating motion of the mechanical link between
both thermal baths, i.e., in the form of heat. It should be emphasized that heat can be transferred through
a single degree of freedom. In the Appendix we consider two simple systems and show that they act, as
should be expected, as heat conductors, having a non zero thermal condutivity.

For the ratchet engine, we conclude that the stationary regime, , is an irreversible situation: no

work is done but nevertheless a flow of heat goes from the hotter to the colder bath through the
mechanical link between both baths. If k is the conductivity of the engine in this stationary regime, then

heat flows from the hot to the cold bath at a rate  and entropy is produced at a rate

. This non zero production of entropy prevents the system to posses the

Carnot efficiency. In fact, in the quasistatic limit, , the efficiency of the engine

 

obviously vanishes for W goes to zero whereas  remains finite. Notice that in this respect the ratchet

engine also differs from many of the irreversible engines considered by the Finite Time Thermodynamics
[5] which achieve Carnot efficiency at zero power but smaller efficiencies at finite power (cfr. the
celebrated Curzon-Ahlborn formula for the efficiency of an engine working at maximum power [6]).

Let us go back to Table 1 in order to find out which are the less convincing estimations that it contains.
We find the last row of Table 1 extremely doubtful. One could conceive limiting situations agreeing with
the rest of the entries in the table: the Arrhenius factor is a good approximation for low enough
temperatures [8,9] and, if  is much larger than , the energy  for a forward jump will be

mostly taken from the vanes and the excess  mostly dissipated to the ratchet. But, why is there no
dissipation to the ratchet bath in a backward jump? In the first page of the chapter it is said: ``... an
essential part of the irreversibility of our wheel is a damping or deadening mechanism which stops the
bouncing [of the pawl]'' (here ``irreversibility'' stands for the asymmetric behavior of the ratchet and it
has nothing to do with thermodynamical irreversibility). This damping mechanism could take place in
the collisions between the ratchet and the pawl and/or because both are embedded in a gas. In any case,
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when the pawl is going down in a backward jump, undergoing both the force of its spring and the force
of the hanging weight, a damping occurs in the ratchet-and-pawl end of the axle as well as in the vanes
end; even the damping will be greater in the former if we consider situations where the vanes are much
hotter than the ratchet, .

The last entrance of Table 1 should be replaced in the following way: in a backward jump a part of the
excess of energy, say  with , is dissipated to the vane and the rest,

 is dissipated to the ratchet. Then, in the stationary regime, the flow of heat is:

where  is the number of forward jumps per unit of time.

There is another important objection that could be made to Feynman's analysis. The assumption that the
constant  in front of the Arrhenius factor is the same for the two thermal baths is not completely

justified. These constants, say  and , depend on the detailed structure of each bath and it is

possible to conceive situations where they are different. Nevertheless, if the entrances in Table 1 were
correct, one could obtain efficiencies bigger than  in the case . Since there is no

indication of how Table 1 should be modified in order to deal with this case, Feynman's analysis is a
rather incomplete proof of the compatibility of the ratchet engine and the second law.

The answer to this objection lies again in the above modification of Table 1. The relationship between ,

, and  should yield to an efficiency compatible with the second law. This relationship is

however hard to find and depends on details of the baths and the coupling between the system and the
baths.
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Conclusions
To conclude, let us stress that our criticism is not only focused on quantitative aspects of Feynman's
analysis but it reveals that it is in contradiction with two fundamental facts from Thermodynamics and
Statistical Mechanics:

Carnot efficiency follows from a zero entropy production, as explained in sec. 2.1.  
A system simultaneously coupled to two thermal baths at different temperatures cannot be in
thermal equilibrium and therefore it cannot undergo a reversible process.

2.  

The above deviation from equilibrium, as indicated by the examples worked out in the Appendix, implies
a continuous transfer of heat from the hotter bath to the colder one, i.e., a non zero thermal conductivity
and consequently a production of entropy. This thermal conductivity is missing in Table 1.

The misconception in Feynman's analysis is specially relevant from a pedagogical point of view, for it
does not contribute to clarify under which conditions a process is thermodynamically reversible and
mixes up the concept of reversible process and quasistatic process. Reversibility necessarily implies that
the system is in equilibrium at every time during the process. A quasistatic process is usually a reversible
one because the constrains of the system are moved much slower than the relaxation of the system to
equilibrium, so it can be considered in equilibrium with its constrains at every time. This is the case in a
Carnot cycle. However, if the constrains themselves are of a nonequilibrium nature, as, for instance,
those of a gas in a box with each side at a different temperature or pressure, a quasistatic process is not a
reversible one. In fact, even when the constrains do not change in time, the system is not at equilibrium,
as it happens in the ratchet engine.
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Appendix
In this Appendix we calculate the thermal conductivity of two simple models related with the ratchet engine.
Both consist in a system coupled to two thermal baths at different temperatures.

One degree of freedom.
Consider an axle with vanes at both ends. Each end is embedded in a thermal bath at temperatures  and  ,

respectively (see Fig.2). The angle of the axle, x, performs a Brownian motion due to fluctuations induced by the
baths. We will obtain the equation of motion for x and from this equation the energy transfer between the two
baths.

  
Figure 2: The axle with two vanes.

Recall that the position of a Brownian particle at temperature T in a potential  is well described by the

Langevin equation:

 

where  is the friction coefficient and  is a Gaussian white noise with zero average and temporal correlation

 

 being the Boltzmann constant. The Fokker-Planck equation for the probability density  of the

position x and the momentum  corresponding to the Langevin equation (7) reads [10]
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The stationary solution of (9) is precisely the thermal equilibrium Gibbs state

 

Using the Fokker-Planck equation (9), one can derive the following evolution equation for the average energy of
the particle:

 

The second term of the r.h.s. is the energy dissipated by the particle (per unit of time) into the bath, whereas the
first one is the energy the system takes from the bath due to fluctuations. They of course cancel each other at
thermal equilibrium, as it can be easily seen from the equipartition theorem: .

Let us consider now the system of Fig. 2. The Langevin equation for the angle x is (for t large enough [11])

 

where we have assumed the friction coefficient to be equal for the two baths. Now the white Gaussian noises are
characterized by the following temporal correlations:

 

The stationary solution corresponding to (12) still can be easily found: it is the equilibrium Gibbs state at
temperature .

The evolution equation for the average energy of the system now reads

 

and, by analogy with Eqn. (11) and the interpretation following it, we can identify

 

as the energy flow from bath i to the system. In the stationary regime the whole r.h.s. of (14) is zero but not each

term  separately, indicating that there is a continuous flow of heat from one bath to the other. Assuming

, heat flows from bath 1 to bath 2 at a rate
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as it can be immediately derived by computing  with the Gibbs ensemble at temperature . Therefore, we

see that there is a heat transfer obeying a Fourier law and that the thermal conductivity of the axle is
.

The heat transfer takes place because the dispersion of p no longer satisfies the equipartition theorem. The system
reaches a stationary state which does not correspond to thermal equilibrium. In this particular case, this state has
the form of a Gibbs state with an effective temperature but, in general, the form of the stationary probability
distribution could be completely different, as in our next example.

Two degrees of freedom. Linear case.
Let us assume now that the axle of the previous example is not rigid but it has a finite torsion coefficient . The
system now must be described by two degrees of freedom ,  corresponding to the angle of the vanes at each
end of the axle, respectively. The equations of motion are now

 

and the noise correlations are again given by (13). Note that the same equations apply for a dumbell with each
mass immersed in a thermal bath at a different temperature.

The evolution equation for the average energy of the system reads

 

and, as in the previous example, we can identify the first term of the r.h.s. as the energy transfer rate  from

bath 1 to the system, whereas the second one is the heat transfer rate  from bath 2. Again, in the stationary

regime the whole r.h.s. is zero, , but not each term separately indicating that there is a continuous

flow of heat from one bath to the other.

The calculation of  and  in the stationary regime is now more involved. We present the main steps of the

calculation. Let . From the Langevin equations (17) or its corresponding Fokker-Planck equations,
one can get the following evolution equations:
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In the stationary regime the above time derivatives are zero. One thus obtains:

 

where . The second moment of the momentum

is again  times a weighted average of the two temperatures. If  this average is , that is,  and 

do not interact and each one is in equilibrium with its corresponding bath. On the other hand, for  we
recover the result obtained above for the rigid axle.

Finally, the heat flow reads

i.e., we obtain again the Fourier law with a positive conductivity . Notice that the

stationary state cannot be written as proportional to  for some effective temperature, since, for
instance, r and  are correlated if .
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